Introduction / Project Background:

Pneumothorax:
- Occurs when air leaks into the space between the pleural surfaces
- Life threatening situation when open pneumothorax develops into tension pneumothorax (PTx)
- Remedy: Vented seals regulate air entry or exit through the pleural cavity to relieve tension.

Phase I study:
- In a first phase study of 17 different chest seals with optimal air flow and new material, we down-selected the best performing vented and non-vented chest seals based on adhesive properties. [2013 MHRS poster presentation]
- Kheirabadi et al. has demonstrated that only vented chest seals can prevent pneumothorax from developing into IP Tx. [Kheirabadi et al 2013].

Battlefield situation:
- Exposure to extreme environmental conditions can be encountered.

Objectives:
- Evaluation of the effects of exposure at extreme hot and cold temperatures on the adhesive properties of the downselected vented chest seals.

Results/Accomplishments:

Evaluation Methods:

Swine Skin Model Adhesion Experimentation:
- Quantitative measurements for the detachment of the seal from the pig skin using:
 - Peeling technique: Percent adherence of the horizontal unbound portion of the seal that started detaching from the skin.
 - Suction technique: Detachment level: fluid displaced for the seal to detach without breaking the air tight sealing. Breaching level: fluid displaced for compromising the airtight sealing.

Temperature exposure:
- Cold: 18.5 ± 1.9 hours at -19.5 ± 1.3 °C
- Hot: 17.7 ± 1.5 hours at 71.5 ± 2.0 °C

Technology:

Down-selected vented seals:
- Vented chest seal
- 5 non-vented seals considered for testing

Valve/vent:
- Protruding 3-ball valves
- Protruding Multichannel
- Flat middle Vent
- Flat protruding Valve
- Flat side Vent

Product:
- Bolin® CS
- Fast Breathe® CS
- Russel® CS
- SAM® CS
- Hyfin® CS

Overall:
- Product: Best Overall
- Red: Medium
- Medium: Medium
- Medium: Medium
- Medium: Medium
- Medium: Medium

Conclusions:

- Adhesion of vented seals to skin were maintained after an average exposure of 18 hours at extreme temperatures of hot (71.5 °C) or cold (-19.5 °C). Adhesion was slightly less for the Bolin® chest seal; this was attributed to coarse swine hair.
- Exposure to hot temperature had a tendency to "melt" the adhesives causing glue to remain on the skin; in particular for the SAM® chest seal, Hyfin® chest seal, and Fast Breathe® chest seal. Seal removal was very difficult in these cases.
- Other qualitative characteristics may be considered for more specific down-selection.

Project Future:

- Live-animal experimental hemodynamic/respiratory physiology testing will assess the valve/vent type for best performance of vented seals. This will be conducted at USAISR.

The opinions of the authors and members of company names, trade names, or commercial products does not constitute endorsement or recommendation for use by the Federal Government, Navy, or Department of Defense. Study funded by the 6.7 Defense Health Program, work unit number A1267, and USAAMRA. Animal experiments were performed using a study protocol that was reviewed and approved by the Walter Reed Army Institutes of Research/Naval Medical Research Center Institutional Animal Care and Use Committee.